Toxigenic *Fusarium* species and mycotoxins associated with maize ear rot in Europe

A. Logrieco, G. Mulè, A. Moretti and A. Bottalico Institute of Sciences of Food Production, CNR, Viale L. Einaudi 51, 70125, Bari, Italy (Fax: +390805486063; E-mail: a.logrieco@area.ba.cnr.it)

Key words: maize pink ear rot, Fusarium mycotoxins, Fusarium graminearum, zearalenone, trichothecenes, deoxynivalenol, Fusarium verticillioides, fumonisins, Fusarium proliferatum, fusaproliferin, moniliformin

Abstract

Several *Fusarium* species occurring worldwide on maize as causal agents of ear rot, are capable of producing mycotoxins in infected kernels, some of which have a notable impact on human and animal health. The main groups of *Fusarium* toxins commonly found are: trichothecenes, zearalenones, fumonisins, and moniliformin. In addition, beauvericin and fusaproliferin have been found in *Fusarium*-infected maize ears. Zearalenone and deoxynivalenol are commonly found in maize red ear rot, which is essentially caused by species of the *Discolour* section, particularly *F. graminearum*. Moreover, nivalenol and fusarenone-X were often found associated with the occasional occurrence of *F. cerealis*, and diacetoxyscirpenol and T-2 toxin with the occurrence of *F. poae* and *F. sporotrichioides*, respectively. In addition, the occurrence of *F. avenaceum* and *F. subglutinans* usually led to the accumulation of moniliformin. In maize pink ear rot, which is mainly caused by *F. verticillioides*, there is increasing evidence of the wide occurrence of fumonisin B₁. This carcinogenic toxin is usually found in association with moniliformin, beauvericin, and fusaproliferin, both in central Europe due to the co-occurrence of *F. subglutinans*, and in southern Europe where the spread of *F. verticillioides* is reinforced by the widespread presence of *F. proliferatum* capable of producing fumonisin B₁, moniliformin, beauvericin, and fusaproliferin.

Abbreviations: AcDON – Mono-acetyldeoxynivalenols (3-AcDON, 15-AcDON); AcNIV – Mono-acetylnivalenol (15-AcNIV); BEA – Beauvericin; DiAcDON – Di-acetyldeoxynivalenol (3,15-AcDON); DAcNIV – Diacetylnivalenol (4,15-AcNIV); DAS – Diacetoxyscirpenol; DON – Deoxynivalenol (Vomitoxin); FB₁ – Fumonisin B₁; FB₂ – Fumonisin B₂; FB₃ – Fumonisin B₃; FUP – Fusaproliferin; FUS – Fusarenone-X (4-Acetyl-NIV); FUC – Fusarochromanone; HT2 – HT-2 toxin; MAS – Monoacetoxyscirpenol; MON – Moniliformin; NEO – Neosolaniol; NIV – Nivalenol; T2 – T-2 toxin; ZEN – Zearalenone; ZOH – zearalenols (α and β isomers).

Introduction

Several *Fusarium* species are widespread pathogens on maize in temperate and semi-tropical areas, including all European maize-growing areas. They cause root, stem and ear rot, with severe reductions in crop yield, often estimated at between 10% and 30%. In addition, certain strains are capable of producing mycotoxins which can be formed in pre-harvest infected

plants, or in stored grains. The phase of maize fusariosis with the greatest mycotoxicological concern is the ear rot, but the formation of mycotoxins in rotted stalks (notably ZEN, ZOH and DON) (Bottalico et al., 1985; Lew et al., 1997), infected leaves (NIV) (Lew et al., 1997), and in whole plants (ZEN) (Oldenburg, 1993) could represent a significant risk for forage and silo maize. The occurrence of mycotoxins in maize kernels is of great concern worldwide, because their presence

in feeds and foods is often associated with chronic or acute mycotoxicoses in livestock and, to a lesser extent, in humans. It has been estimated that 25% of the world food crops is affected by mycotoxins (Charmley et al., 1995), but for some *Fusarium* toxins in maize, such as DON and FB₁, it is likely that this percentage is even higher (Eriksen and Alexander, 1998; Bullerman, 1996).

In this review, the most relevant aspects of the distribution of toxigenic *Fusarium* species and related mycotoxins in ear rot of maize in European countries are reviewed, with emphasis on the occurrence of trichothecenes, zearalenone, and fumonisins in infected plants standing in the field. Moreover, the relationship between the ecological distribution of *Fusarium* species and the relative mycotoxin profile is also stressed, because this may be useful for predicting the mycotoxins that are most likely to be formed in maize and those which may be affected by conducive factors such as tillage practices, host genotypes and environmental conditions.

Fusarium species involved and mycotoxins produced

The species of *Fusarium* causing maize ear rot are worldwide in distribution and are characterized by the co-occurrence or by the quick succession of different species. It is common to isolate up to nine different *Fusarium* species from a single fragment of infected tissue or kernel. Together with the restricted number of toxigenic species which are regarded as pathogenic, there are also several less pathogenic or opportunistic *Fusarium* species capable of producing considerable amounts of toxins. The toxigenic profile of a contaminated crop is therefore determined not only by the predominant pathogenic species, but also by the opportunistic species (Bottalico, 1997).

Fusarium species are responsible for at least two kinds of maize ear rot, roughly differentiated as red ear rot or red fusariosis, mainly caused by species of the Discolour section, and pink ear rot or pink fusariosis mainly caused by representatives of the Liseola section (Shurtleff, 1980; Chelkowski, 1989). The predominant species causing maize red ear rot are F. graminearum (teleomorph Gibberella zeae), F. culmorum, F. cerealis (syn. F. crookwellense), and F. avenaceum (teleomorph G. avenacea). The species frequently isolated from maize pink ear rot are essentially the widespread

anamorphs of the rather rare Gibberella fujikuroi, namely, F. verticillioides (syn. F. moniliforme), F. proliferatum, and F. subglutinans. Among the other toxigenic Fusarium species less frequently isolated from both types of maize ear rot are F. equiseti (teleomorph G. intricans), F. poae, F. sporotrichioides, (teleomorph G. acuminata), acuminatum F. semitectum (syn. F. pallidoroseum, F. incarnatum), F. solani (teleomorph Nectria haematococca), and oxysporum. Finally, there are other species which are only sporadically isolated from maize, such as F. anthophylum, F. chlamydosporum (syn. F. fusarioides), F. compactum, F. heterosporum (syn. reticulatum, F. graminum), F. lateritium, F. sambucinum, F. torulosum, and F. venenatum. It is worth stressing that the complex species G. fujikuroi has been subdivided into seven distinct mating populations (biological species), indicated from A to G, and covering ten Fusarium anamorphs (Leslie, 1995). Those most frequently found on maize were F. verticillioides (A), F. proliferatum (D), and F. subglutinans (E), which can also be differentiated by their toxigenic capabilities (Moretti et al., 1997).

Mycotoxins produced

Fusarium species on maize can produce many mycotoxins, some of which are of notable importance. The naturally occurring Fusarium mycotoxins belong to the trichothecenes, zearalenones, and fumonisins. Moreover, MON, BEA and FUP have also been found in naturally infected maize kernels and are considered as emerging toxicological problems. The mycotoxins produced by Fusarium species from cereals are illustrated in Table 1.

Trichothecenes

Of several trichothecene derivatives produced by *Fusarium* species, only a few have been encountered as natural contaminants of maize products. The *Fusarium* trichothecenes have been divided into type A-trichothecenes, characterized by a functional group other than a ketone at C-8, and type B-trichothecenes with only the carbonyl at C-8. The type A-trichothecenes include: (a) T2 and HT2, mainly produced by strains of *F. sporotrichioides*, *F. acuminatum*, and *F. poae*; (b) DAS, and MAS, chiefly produced by strains of *F. poae*, *F. equiseti*,

Table 1. Mycotoxigenic Fusarium species associated with cereals and their mycotoxins

Fusarium species ^a	Mycotoxins ^b		
F. acuminatum	T2, MON, HT2, DAS, MAS, NEO, BEA		
F. anthophilum	BEA		
F. avenaceum	MON, BEA		
F. cerealis	NIV, FUS, ZEN, ZOH		
F. chlamydosporum	MON		
F. culmorum	DON, ZEN, NIV, FUS, ZOH, AcDON		
F. equiseti	ZEN, ZOH, MAS, DAS, NIV, DACNIV, FUS, FUC, BEA		
F. graminearum	DON, ZEN, NIV, FUS, AcDON, DACDON, DACNIV		
F. heterosporum	ZEN, ZOH		
F. nygamai	BEA, FB_1, FB_2		
F. oxysporum	MON, BEA		
F. poae	DAS, NIV, FUS, MAS, T2, HT2, NEO, BEA		
F. proliferatum	FB_1 , BEA, MON, FUP , FB_2 ,		
F. sambucinum	DAS, T2, NEO, ZEN, MAS, BEA		
F. semitectum	ZEN, BEA		
F. sporotrichioides	T2, HT2, NEO, MAS, DAS		
F. subglutinans	BEA, MON, FUP		
F. tricinctum	MON, BEA		
F. verticillioides	\mathbf{FB}_1 , FB_2 , FB_3		

^aFusarium nomenclature according to Nelson et al. (1983). ^bBold letters indicate the important mycotoxins. Abbreviations: AcDON – Mono-acetyldeoxynivalenols (3-AcDON, 15-AcDON); AcNIV – Mono-acetylnivalenol (15-AcNIV); BEA – Beauvericin; DiAcDON – Di-acetyldeoxynivalenol (3,15-AcDON); DACNIV – Diacetylnivalenol (4,15-AcNIV); DAS – Diacetoxyscirpenol; DON – Deoxynivalenol (Vomitoxin); FB₁ – Fumonisin B₁; FB₂ – Fumonisin B₂; FB₃ – Fumonisin B₃; FUP – Fusaproliferin; FUS – Fusarenone-X (4-Acetyl-NIV); FUC – Fusarochromanone; HT2 – HT-2 toxin; MAS – Monoacetoxyscirpenol; MON – Moniliformin; NEO – Neosolaniol; NIV – Nivalenol; T2 – T-2 toxin; ZEN – Zearalenone; ZOH – zearalenols (α and β isomers).

F. sambucinum, and F. sporotrichioides; and (c) NEO, mainly produced by strains of F. sporotrichioides, F. poae, and F. acuminatum. The type B-trichothecenes include: (a) DON, and its derivatives mono- (3- and 15-AcDON), and diacetylated (3,15-AcDON) derivatives, produced by strains of F. graminearum and F. culmorum; and (b) NIV and FUS, and diacetylated derivatives (4,15-AcNIV), produced by strains of F. cerealis, F. poae, F. graminearum and F. culmorum. Trichothecenes cause a variety of toxic effects in laboratory and farm animals, including skin inflammation, digestive disorders, haemorrhages in several internal organs, haemolytic disorders and depletion of the bone marrow, impairment of both humoral and cellular immune responses, and nervous disorders (Rizzo et al., 1992; IARC, 1993; Rotter and Prelusky, 1996). Trichothecenes are commonly associated with several mycotoxicoses in livestock, including haemorrhagic and emetic syndromes; and have also been implicated in human toxicoses (Bhat et al., 1989; IARC, 1993; Wang et al., 1993; Beardall and Miller, 1994; Ehling et al., 1997).

Zearalenones

Zearalenone (ZEN) is mainly produced by F. graminearum, F. culmorum, F. cerealis, F. equiseti, and F. semitectum, often associated with ZOH (α - and β -zearalenol isomers). ZEN is among the most widely distributed Fusarium mycotoxin in agricultural commodities, and has very often been encountered, even at very high concentrations, in maize. ZEN is an uterotrophic and estrogenic compound responsible for recurring toxicoses in livestock, characterized by hyper-estrogenism in swine, and infertility and poor performance in cattle and poultry (Kuiper-Goodman et al., 1987; IARC, 1993).

Fumonisins

Fumonisins were first isolated from *F. verticillioides*, and then found in cultures of *F. proliferatum* and in a few other less ecologically important *Fusarium* species (Nelson et al., 1992). Four series of fumonisins have been described, and named A, B, C, and P. The

B series includes the most active fumonisins, particularly FB₁ which is causing great mycotoxicological concern (Hopmans and Murphy, 1995; Musser et al., 1996; Abbas et al., 1998). Fumonisin B₁ occurs naturally at biologically significant levels in maize and in a variety of maize-based human foodstuffs and animal feeds worldwide (Rheeder et al., 1992; Sanchis et al., 1995; Logrieco et al., 1995; Shephard et al., 1996). Feeds contaminated with FB₁ are known to cause leukoencephalomalacia in horses (ELEM), pulmonary oedema and hepatic syndrome in swine (PPE), poor performance in poultry, and alteration in hepatic and immune function in cattle (Ross et al., 1990; Kellerman et al., 1990; Harrison et al., 1990; Osweiler, 1995). The first case of ELEM was reported in north Italy associated with the presence of FB₁ in maize-based feed (Caramelli et al., 1993). Moreover, home-grown corn contaminated with FB1 has been statistically associated with high rates of human oesophageal cancer (HEC) in areas of southern Africa, China, and the southeastern U.S.A. (Marasas, 1995). A similar claim has been made for northeastern Italian areas (Franceschi et al., 1990), where FB₁ was found in maize flour (polenta) in concentrations up to 3.76 mg kg⁻¹ (Pascale et al., 1995). The evidence that cultures of F. verticillioides and samples of FB₁ are capable of promoting liver cancer in rats (Gelderblom et al., 1996), together with other observations obtained from several genotoxic tests, led IARC (1993) to classify the toxins of F. verticillioides as carcinogenic to animals and possibly as carcinogenic to humans (Group 2B).

Moniliformin

Moniliformin has been purified from cultures of several *Fusarium* species, including: *F. subglutinans*, *F. proliferatum*, *F. avenaceum*, *F. tricinctum* and several others of less ecological importance (Marasas et al., 1986; Chelkowski et al., 1990; Schütt et al., 1998). Diets containing culture material naturally contaminated with MON, or amended with purified MON, were responsible for reduced performance, haematological disorders, myocardial hypertrophy, and mortality in rodents, chicks, ducklings, and pigs (Ledoux et al., 1995; Harvey et al., 1997).

Beauvericin

Beauvericin is a well known cyclic hexadepsipeptide, first reported to be produced by some

entomopathogenic fungi (Beauveria spp.) then found in cultures of strains of F. semitectum, F. subglutinans and F. proliferatum, isolated from maize and maize-based feed for swine (Plattner and Nelson, 1994; Moretti et al., 1994; 1995). In addition, BEA was found in cultures of several other Fusarium species, including F. avenaceum, F. acuminatum, F. equiseti, F. poae and F. oxysporum (Logrieco, 2000). BEA was detected for the first time in maize ear rot in Poland (Logrieco et al., 1993), and then found as a toxic contaminant of maize in Italy (Bottalico et al., 1995; Logrieco et al., 1995). Besides its high toxicity to insects (Gupta et al., 1991), BEA is also cytotoxic to mammalian cell tissues, and was reported to cause apoptosis in both murine and human cell lines (Macchia et al., 1995). Moreover, BEA showed toxic effects on the contractility of guinea pig smooth muscle (Krska et al., 1997).

Fusaproliferin

Fusaproliferin is a novel sesterterpene first purified from a culture of *F. proliferatum* from maize ear rot in northern Italy (Ritieni et al., 1995), and then found both in cultures of several strains of *F. proliferatum* and *F. subglutinans* (Moretti et al., 1997), and in naturally infected maize (Ritieni et al., 1997a). Investigations on the toxicity of FUP indicated that this toxin is lethal to larvae of *Artemia salina*, and cytotoxic to the SF-9 insect cell line and to IARC/CL 171 human B lymphocyte culture (Logrieco et al., 1996). Moreover, high mortality in broiler chicks fed with maize cultures of *F. proliferatum* was reported by Javed et al. (1993) and Ramakrishnan and Wu (1994), and severe teratogenic effects were observed in chick embryo bioassays by Ritieni et al. (1997b).

Ear rot of maize in Europe

Fusarium species in ear rot of maize

The relative incidence of *Fusarium* species and related mycotoxins found in maize ear rot diseases in Europe are tentatively grouped into red fusariosis and pink fusariosis, and summarized in Table 2. The distribution and the prevalence of different *Fusarium* species causing the two kinds of ear rot disease are largely governed by environmental conditions, primarily temperature, as well as by many other factors including agro-technical practices (Arino and Bullermann, 1994). In general, red

Table 2. Toxigenic Fusarium species and associated mycotoxins from maize ear rot in Europe

Species ^a	Incidence		Mycotoxin found ^b
	North/Centre	South	
Red ear rot or Red fusariosis	S		
F. graminearum	+++	+	DON, AcDON, NIV, FUS, ZEN
F. subglutinans	++	土	MON, BEA, FUP
F. avenaceum	++	±	MON
F. cerealis	+	±	NIV, FUS, ZEN, ZOH
F. culmorum	+	_	DON, NIV, ZEN, ZOH
F. sporotrichioides	+	_	T2, HT2, NOS
F. poae	+	_	DAS, NIV
F. equiseti	+	土	DAS, ZEN, ZOH
F. acuminatum	+	土	T2, NEO
F. verticillioides	+	+	_
F. proliferatum	+	+	_
Pink ear rot or Pink fusarios	sis		
F. verticillioides	+	+++	\mathbf{FB}_1 , \mathbf{FB}_2 , \mathbf{FB}_3
F. proliferatum	±	+++	FB_1 , FB_2 , FUP , MON , BEA
F. subglutinans	+++	+	MON, BEA, FUP
F. graminearum	+	±	_
F. culmorum	+	±	_
F. equiseti	+	±	_
F. solani	±	+	_
F. semitectum	±	+	_
F. cerealis	±	\pm	_
F. sporotrichioides	±	_	_
F. oxysporum	_	+	_

For footnotes refer Table 1.

fusariosis is particularly severe in years and locations characterized by frequent rainfall and low temperatures during the summer and early fall (Ellend et al., 1997; Bočarov-Stančić et al., 1997), while pink fusariosis prevails in drier and warmer climates of southern areas (Bottalico et al., 1986; 1995; Bottalico and Logrieco, 1988). In the last ten years, the most frequently reported dominant species was *F. verticillioides* associated with *F. subglutinans*, and followed only to a slightly lesser extent by *F. graminearum*. Furthermore, the emerging trend of *F. proliferatum* moving from southern to northern maize-growing areas is well documented (Bottalico, 1997; 1998).

Maize red ear rot

In maize red ear rot, the pathogen, notably *F. graminearum*, usually starts from the tip of the ear and develops a reddish mould covering the ear extensively. The brownish perithecia of the teleomorph *G. zeae* are commonly observed on the infected husks and ear shanks. A comprehensive evaluation of reports from Austria (Krska et al., 1996; 1997; Lew et al., 1991), Slovenia (Milevoj, 1997), Yugoslavia

(Bočarov-Stančić et al., 1997; Lević et al., 1997), Poland (Chelkowski, 1989; Lew et al., 1996); Czech Republic (Nedelnik, 2000), and România (Nagy and Bâgiu, 2000), clearly indicates that F. graminearum is increasingly distributed from central to northern European areas, and is occasionally associated with many additional Fusarium species, the occurrence and prevalence of which changes from region to region, and year to year, depending mainly on the climatic conditions (temperature and rain) and tillage practices (crop rotation, fertilization and planting area). In this context a very relevant role is played by host genotypes (maturity class, Fusarium-susceptibility) (Doko et al., 1985; Visconti, 1996). There are some other Fusarium species associated with F. graminearum, namely F. subglutinans, which predominates over F. graminearum in some Austrian locations (Lew et al., 1991), F. culmorum and F. cerealis, which were found to be more common in central European areas, and F. avenaceum, the relative presence of which seems to increase from central to northern European areas. Besides the more representative species, including F. graminearum, F. subglutinans, F. cerealis, F. culmorum and F. avenaceum, which represent almost 90–95% of all species isolated, *F. sporotrichioides*, *F. poae*, *F. equiseti*, and *F. acuminatum*, and to a lesser extent *F. verticillioides* and *F. proliferatum*, were also isolated.

The Fusarium species profile, and consequently mycotoxin accumulation can change drastically with insect damage. Lew et al. (1991) noted a striking influence of European corn borer injuries on the Fusarium species profile on maize in Austria in 1988-89. On maize ears not damaged by the corn-borer, F. graminearum and F. subglutinans were evenly represented (54.5% and 48.7%, respectively), while on ears damaged by the corn-borers there were many more species belonging to the Liseola section (F. subglutinans, F. verticillioides) (up to 80%) than to the *Discolor* section (F. graminearum, F. culmorum, F. cerealis) (less than 15%). Thus, control of the European corn-borer can lead to a reduction of MON and FB₁ produced by Liseola representatives, but does not affect the occurrence of ZEN, DON and NIV which are produced by Fusarium species belonging to the Discolor section.

Maize pink ear rot

In maize pink ear rot, the pathogens colonize the ear from the tip by external infections, but the kernels may also be infected through the silk at the silk stage to make ear colonization complex. In fact, the most important pathway for F. verticillioides to achieve seed-borne kernel infection is through silk infections at the silk stage (Munkwold et al., 1997). Thus, in association with a more generalized colonization originating from airborne inoculum colonizing the ears from the tip, a random kernel rot phase of the disease can also occur, appearing as randomly scattered individuals or groups of kernels, usually tan to brown, which develop pink mycelium under wet conditions. In this case, the risk of mycotoxin (fumonisin) accumulation in infected kernels may begin early in maize ear development and increases as the kernels reach physiological maturity (Warfield and Gilchrist, 1999). Maize pink ear rot is commonly observed from southern to central European areas, and the species most frequently isolated is F. verticillioides, associated with F. subglutinans and to a lesser extent with F. proliferatum. Fusarium proliferatum is more common in southern European areas, but it is displaced by F. subglutinans in central areas where the latter predominates as the maize

ear rot agent and is usually isolated in much higher amounts than F. verticillioides. Fusarium proliferatum was commonly reported together with F. verticillioides in Italy (Logrieco et al., 1995), but in Austria (Krüger, 1989; Krska et al., 1997) Croatia (Jurjević et al., 1997), Slovak Republic (Piecková and Jesenská, 1997; Srobárová, 1997), Hungary (Szécsi, 1994), and especially in Poland (Kostechi et al., 1995) the occurrence of F. proliferatum was rarely recorded. However, it seems that unusually drier and warmer summers, like those prevailing in the 1990s led to an increase of F. proliferatum in central Europe, as reported both for the Slovak Republic in 1996 (Srobárová et al., 2000), and in Austria where the overall number of F. proliferatum infections rose from less than 1% in the 1980s to 2–11% towards the end of the 1990s, leading to an expected increase of fumonisin in contaminated samples (Adler et al., 2001). Associated with F. verticillioides, F. subglutinans and F. proliferatum, many other species were commonly isolated from maize pink ear rot. The species incidence reported in Yugoslavia by Lević et al. (1997) during a three-year survey (1994-96) of freshly harvested maize ears, included F. verticillioides (63%), F. subglutinans (51%), F. graminearum (12%), F. proliferatum (10%), F. oxysporum (6%), and F. solani (2%). Among the other less frequently isolated species were F. equiseti, F. sporotrichioides, F. chlamydosporum, F. cerealis, and F. semitectum. In Italy, where environmental conditions are often conducive to a high incidence of maize pink ear rot, F. verticillioides predominates (in almost 100% of the infected kernels), with a profuse co-occurrence of F. proliferatum in southern areas (in over 60% of the infected kernels), then decreasing from central to northern areas (in about 54% and 34% of kernels) (Logrieco et al., 1995; Ritieni et al., 1997a). The higher occurrence of F. proliferatum in Italy has focussed attention on this species, which is usually confused with other closely related species of the Liseola section, and led to a more correct evaluation of its pathogenic and toxigenic capabilities (Logrieco et al., 1995). A spreading trend of F. proliferatum similar to that observed in Italy, was reported for nearby European countries (Lević et al., 1997; Srobárová, 1997).

Occurrence of zearalenone and deoxynivalenol

Epidemics of maize red ear rot, induced by *F. graminearum* and *F. culmorum* usually lead to the

occurrence of ZEN, DON, and 3AcDON, as reported in Poland (Chelkowski, 1989; Grabarkiewicz-Szczesna et al., 1996), and Yugoslavia (Bočarov-Stančić et al., 1997). In relation to the severity of the disease, it is possible to find unexpectedly high concentrations of toxins. In maize ear samples collected in 1988-89 in Austria, mostly infected by F. graminearum, F. culmorum and F. cerealis, Lew et al. (1991) found very high amounts of ZEN (40 mg kg⁻¹), DON $(500 \,\mathrm{mg}\,\mathrm{kg}^{-1})$ and NIV $(10 \,\mathrm{mg}\,\mathrm{kg}^{-1})$. More recently, a survey of 85 freshly harvested maize ear samples, collected in 1996 in the eastern part of Austria, mostly contaminated by F. graminearum, contained DON in 95% of samples, 15-AcDON in 54%, 3-AcDON in 3.5% and ZEN in 70% (Ellend et al., 1997). A similar situation, but with much greater amounts of DON, 15-AcDON, 3-AcDON, and ZEN, was found for samples of maize ears infected by F. graminearum, collected from 1988 to 1991 in Poland (Visconti et al., 1990; Grabarkiewicz-Szczesna et al., 1996). Additional observations carried out in Poland on the distribution of mycotoxins in maize ears infected by F. graminearum, revealed that the levels of DON, ZEN, 3-AcDON, and 15-AcDON in whole ears were not evenly distributed. but were greater in the axial stems than in the kernels (Perkowski et al., 1991). In a survey carried out in 1977 in southern Italy (Metapontum), ZEN was found in F. graminearum-infected ears of maize sown as a second crop and harvested at the end of November (Bottalico, 1979), while high concentrations of DON were found in almost all the selected F. graminearuminfected maize ear samples (95%) collected in 1987 in northern Italy (Lombardy) (Bottalico et al., 1989).

Occurrence of nivalenol and fusarenone

Nivalenol and fusarenone have often been reported in maize red ear rot all over the European maize growing areas. Their formation in infected ears may be due to NIV-chemotypes of *F. graminearum*, especially when found together with DON and ZEN, and in the absence or scant presence of *F. cerealis*, as reported for Romania (Moldavia) (Ciudin and Bazgan, 1991), Italy (Logrieco et al., 1992), and Hungary (Szécsi and Bartok, 1995). But, the occurrence of NIV and FUS in European areas appeared to be related more to the spread of *F. cerealis* than that of *F. graminearum*. In fact, strains of *F. cerealis* from red ear rot of maize were essentially able to produce NIV and FUS associated with ZEN, but not DON (Sydenham et al.,

1991), and this capability was confirmed for several strains collected from Finland, Germany, Yugoslavia, Italy, Austria and Poland (Golinski et al., 1988; Bottalico et al., 1990). In 1988-89 surveys of Austrian Fusarium-infected ears, in spite of the wide presence of F. graminearum, Lew et al. (1991) ascribed the occurrence of NIV to the presence of F. cerealis. Moreover, in the 1988 Polish survey of maize red ear rot, almost all samples predominantly colonized by F. cerealis were found to be highly contaminated by NIV and FUS (Visconti et al., 1990). Other Polish surveys (1990–91) of maize ear rot highly infected with F. graminearum and F. cerealis found DON, 15-AcDON and ZEN in ears mostly colonized by F. graminearum, while high concentrations of NIV, FUS and ZEN were found in ears predominantly infected by F. cerealis (Grabarkiewicz-Szczesna et al., 1996). Finally, in Polish samples of maize ears affected by pink ear rot caused by F. poae, NIV was found, associated with FUS, both in grains and in cobs (Chelkowski et al., 1994a).

Occurrence of T-2 and HT-2 toxins

Epidemics of *F. sporotrichioides* usually lead to the accumulation of T-2 derivatives. Polish surveys of maize ears in 1984–85 showed *F. sporotrichioides* as the predominant fungus in approximately 2% of the samples. In hand-selected heavily damaged kernels, up to 1715 mg kg⁻¹ of total type A trichothecenes were found. These included T2, and HT2 (992 and 642 mg kg⁻¹, respectively), and lesser amounts of NOS, T-2 triol and T-2 tetraol (Chelkowski et al., 1987; 1989).

Occurrence of mono- and di-acetoxyscirpenol

Sporadic epidemics of *F. poae* can be responsible for the accumulation, in infected ears, of DAS and MAS, usually associated with NIV and FUS. In maize samples from Austria, NIV and FUS, and DON and ZEN, all probably produced by a NIV-chemotype of *F. graminearum* and *F. culmorum*, were found together with DAS presumably formed by *F. poae* and *F. cerealis* (Bottalico et al., 1983). In Poland, where *F. poae* is a widespread agent of maize pink ear rot, DAS, and MAS, together with NIV and FUS, were produced significantly by almost all the strains (11/14) collected from different locations (Chelkowski et al., 1994a).

Occurrence of fumonisins

There is increasing evidence of the occurrence of FB₁ in maize and maize-based food and feed all over the world (WHO, 2000), including Europe (Sanchis et al., 1994; Pestka et al., 1994; Doko and Vizconti, 1993; Visconti et al., 1996; Patel et al., 1997). Investigations carried out in Italy revealed that F. verticillioides was the most frequently isolated fungus from infected maize plants and from commercial maize kernels associated with FB₁ at levels of up to 5.31 mg kg⁻¹ (Pietri et al., 1995). In general, the occurrence of FB₁ appears to be important in southern European areas, that is Portugal, France (Le Bars and Le Bars, 1995; Dragoni et al., 1996), Spain (Rapior et al., 1993), Croatia (Jurjević et al., 1999), and Italy (Doko and Visconti, 1994; Visconti et al., 1996). Fumonisins are primarily formed in plants infected with F. verticillioides and F. proliferatum, when they are frequently found in preharvested maize ears. In Italy, high levels of fumonisins were often found (250 mg kg⁻¹, in 6/6 selected samples) in association with more severe pink ear rot than that reported for other European countries, (Bottalico et al., 1995; Bottalico, 1998). On the contrary, FB₁ levels seem significantly lower in central to northeastern European areas, including Austria (15 mg kg⁻¹) (Lew et al., 1991; Krska et al., 1997), Switzerland (Pittet et al., 1992), Germany (Usleber et al., 1994), the Czech Republic (Ostrý and Ruprich, 1997), Croatia (Jurjević et al., 1999), and Poland (Chelkowski et al., 1994b). Surveys carried out in Croatia on freshly harvested samples of maize kernels collected in 1996-97 from 14 counties showed a scant presence of F. verticillioides (9.4%) and F. subglutinans (12.2%) associated with a micro-contamination of FB₁ + FB₂ (11.66 mg kg⁻¹ in 93% of positive samples), together with a predominant occurrence of *Penicillium* spp. (98.5% of samples). However, it seems that in some more northern areas, under very favourable conditions, the fumonisins could reach significant levels. This was reported for the Slovak Republic where the level of fumonisins are usually recorded as negligible (Piecková and Jesenská, 1997). The 1998 season was characterized by severe epidemics of F. verticillioides (up to 100% of infected ears) reinforced by the occurrence of F. proliferatum (up to 94%). In particular, in pre-harvest infected maize ears, not only were high concentrations of FB₁ (26.9 mg kg⁻¹) and FB₂ found (6.3 mg kg⁻¹), but the formation of FUP was marked and traces of BEA were also found (Srobárová et al., 2000).

In southern Europe, F. proliferatum, which represents an additional FB1 source, is frequently found with F. verticillioides. Logrieco et al. (1995) and Bottalico et al. (1995) reported that almost all strains of F. proliferatum collected in Italy produced FB₁. Moreover, selected maize ears mainly infected by F. verticillioides were found to be contaminated with FB₁, together with BEA and MON (Logrieco et al., 1995). In an additional survey, FB₁ was found in 9 out of 12 selected maize ears, mainly infected by F. proliferatum (Ritieni et al., 1997a). Therefore, as a result of the co-occurrence of both the principal fungal sources of FB₁, F. verticillioides and F. proliferatum, the probability of finding these carcinogenic toxins in maize is higher in southern than in central or northern Europe.

Occurrence of moniliformin

In infected maize ears, the main MON-producing Fusarium species are F. subglutinans, F. proliferatum and F. avenaceum. While F. subglutinans is widespread in central to northern Europe, and sometimes in part replaces F. verticillioides, F. proliferatum is increasingly reported from south to central European maize-growing areas as reinforcing the occurrence of F. verticillioides (Logrieco et al., 1995). In Italy, high levels of MON were found in maize ears with a widespread presence of F. proliferatum in association with F. verticillioides (Logrieco et al., 1995). In addition, MON was commonly found in maize ears infected with F. subglutinans from central and northern European countries, including Austria (Lew et al., 1991), and Poland (Kostechi et al., 1995; 1997). In particular, very high amounts of MON were found in all infected maize ears in Poland during years with severe epidemics of F. subglutinans (Lew et al., 1996). The high occurrence of MON in maize ear rot from Austria and Poland seemed to be related not only to the spread of F. subglutinans, but also to the frequent occurrence of F. avenaceum (Lew et al., 1991; 1996). In nature, F. subglutinans appears to be a higher MON producer than *F. avenaceum*, and levels up to 399.3 mg kg⁻¹ were associated with its occurrence in infected kernels from ear rot. This level compares with very much lower MON concentrations associated with the presence of F. avenaceum (Sharman et al., 1991). The toxigenicity of F. proliferatum seems comparable with that of F. subglutinans and Logrieco et al. (1995) reported strains of F. proliferatum were able to produce very

large amounts of MON on autoclaved maize. However, the co-occurrence of *F. avenaceum* with *F. subglutinans* on maize in central–northern Europe increases the risk of MON accumulation in infected ears. Therefore, it appears that MON could be one of the more expected mycotoxins in maize ear rot in Europe (Schütt et al., 1998).

Occurrence of beauvericin

In maize ears infected with F. verticillioides, F. subglutinans and F. proliferatum, the occurrence of BEA was found in several European maizegrowing areas together with the formation of FB₁ by F. verticillioides and F. proliferatum, and/or MON by F. subglutinans and F. proliferatum. In particular, BEA was reported in Italy (Moretti et al., 1994; Bottalico et al., 1995; Ritieni et al., 1997a), Poland (Logrieco et al., 1993; Kostechi et al., 1995), Austria (Krska et al., 1996), and the Slovak Republic (Srobarovà et al., 2000). However, it can be presumed that BEA is more widespread than recorded to date. In effect, BEA is produced not only by F. proliferatum and F. subglutinans, which are widespread from southcentral to central-northern areas respectively (Krska et al., 1997; Logrieco, 2000), but also by several other Fusarium species occurring less frequently even in epidemic form, including F. avenaceum, F. acuminatum, F. equiseti, F. poae and F. oxysporum (Logrieco et al., 2000). It is worth noting that Austrian strains of F. subglutinans and F. proliferatum produced high levels of BEA on autoclaved maize (Krska et al., 1997). Similar results were obtained by Bottalico et al. (1995) with strains of F. proliferatum from Sardinia.

Occurrence of fusaproliferin

An important emerging toxicological problem seems to be connected with the occurrence of FUP. This novel fusariotoxin is produced, mostly together with BEA, by strains of *F. proliferatum* and *F. subglutinans* from maize and maize-based food and feed (Moretti et al., 1995; 1997; Logrieco et al., 1996). Since its isolation and characterization, FUP has been increasingly found in maize pink ear rot associated with *F. proliferatum*, especially in Italy (Ritieni et al., 1997a), and in the Slovak Republic (Srobarovà et al., 2000). In particular, 15 of 39 samples of pre-harvest maize ears collected throughout Italy during 1993–94, and predominantly

infected by *F. proliferatum*, were contaminated with FUP, in association with FB₁ and BEA (Ritieni et al., 1997a).

Future perspectives

The many reports from Europe on maize contamination by mycotoxigenic Fusarium species show that the colonization of this important crop plant could be determined by organisms with a broad range of mycotoxin production and different environmental niches. Therefore, the evident biodiversity of these fungal species calls not only for a complex approach from plant pathologists, but requires particular attention to different toxicological problems related to the specific Fusarium contamination. The correct identification of the Fusarium species contaminating maize in different areas is evidence for a need not only for studying the levels of the interaction between Fusarium pathogens and maize, but also to obtain a precise picture of the toxicological risks related to the maize consumption by humans and animals. Developing modern, easy and fast tools for correct identification of toxigenic Fusarium species is therefore one of the future challenges for Fusarium workers. Moreover, as the profile of maize contaminants seems to be related to different environmental conditions, a better evaluation of each Fusarium species should be extremely useful for developing risk assessment models using data collected from a large range of sites in Europe with contrasting climatic conditions. Therefore, constant monitoring of maize throughout Europe in order to collect data on the Fusarium species and mycotoxins that are present in the maize is needed for establishing a European data base. Finally, the occurrence in maize of several mycotoxins with specific chemical traits and modes of action is a serious problem because of their additive and/or synergistic effects. Investigations of these possible effects and of the risks related to multiple mycotoxin contamination of maize will be a major goal for scientists involved in studies of Fusarium in the whole Europe.

Acknowledgments

This work was supported by COST-835 "Agriculturally Important Toxigenic Fungi" and by EU project (QLK1-CT-1999-01380).

References

- Abbas HK, Shier WT, Seo JA, Lee YW and Musser SM (1998) Phytotoxicity and cytotoxicity of the fumonisin C and P series of mycotoxins from *Fusarium* spp. fungi. Toxicon 36: 2033–2037
- Adler A, Law H, Edinger W, Brodacz W, Kiemdler E, Oberforster M and Hinterholzer J (2001) Fusaria in Austrian cereals shifting of species and toxin contamination. In: Abstracts of International Symposium on "Bioactive fungal metabolites Impact and exploitation, Swansea, Wales, 22–27 April 2001, p. 40
- Arino A and Bullerman LB (1994) Fungal colonization of corn grown in Nebraska in relation to year, genotype and growing conditions. Journal of Food Protection 57: 1084–1087
- Beardall GM and Miller JD (1994) Diseases in humans with mycotoxins as possible causes. In: Miller JD and Trenholm HL (eds) Mycotoxins in Grain. Compounds Other Than Aflatoxin (pp 487–539) Eagan press, St. Paul, Minnesota, USA
- Bhat RV, Beedu SR, Ramakrishna Y and Munshi KL (1989) Outbreak of trichothecene mycotoxicosis associated with consumption of mould-damaged wheat in Kashmir Valley, India. Lancet i: 35–37
- Bočarov-Stančić A, Škrinjar M, Mašic Z, Pavcov S and Gološin B (1997) Natural occurrence of *Fusarium* spp. and fusariotoxins in Yugoslav corn kernels. Cereal Research Communications 25: 581–582
- Bottalico A (1979) On the occurrence of zearalenone in Italy. Mycopathologia 67: 119–121.
- Bottalico A (1997) Toxigenic *Fusarium* species and their mycotoxins in pre-harvest cereals in Europe. Bulletin of the Institute for Comprehensive Agricultural Sciences Kinki University, Nara, Japan 5: 47–62
- Bottalico A (1998) *Fusarium* diseases of cereals: Species complex and related mycotoxin profiles in Europe. Journal of Plant Pathology 80: 85–103
- Bottalico A, Lerario P and Visconti A (1983) Mycotoxins occurring in *Fusarium*-infected maize ears in the field, in some European countries. In: Proceedings of the International Symposium on Mycotoxins (pp 375–382) Publication of the Science Department NIDOC, Cairo
- Bottalico A and Logrieco A (1988) Osservazioni sulla fusariosi del Mais in Basilicata. II. Influenza di alcuni fattori colturali. Informatore fitopatologico 38: 55–58
- Bottalico A, Visconti A, Logrieco A, Solfrizzo M and Mirocha CJ (1985) Occurrence of zearalenols (diastereomeric mixture) in corn stalk rot and their production by associated *Fusarium* species. Applied and Environmental Microbiology 49: 547–551
- Bottalico A, Logrieco A and Ricci V (1986) Osservazioni sulla fusariosi del Mais in Basilicata. I. Incidenza della malattia e specie di *Fusarium* coinvolte. Informatore fitopatologico 36: 27–30
- Bottalico A, Logrieco A and Visconti A (1989) Fusarium species and their mycotoxins in infected corn in Italy. Mycopathologia 107: 85–92
- Bottalico A, Logrieco A and Visconti A (1990) Mycotoxins produced by *Fusarium crookwellense* Burgess, Nelson and Toussoun. Phytopathologia Mediterranea 29: 24–127

- Bottalico A, Logrieco A, Ritieni A, Moretti A, Randazzo G and Corda P (1995) Beauvericin and fumonisin B₁ in preharvest *Fusarium moniliforme* maize ear rot in Sardinia. Food Additives and Contaminants 12: 599–607
- Bullermann LB (1996) Occurrence of *Fusarium* and fumonisins on food grains and in foods. In: Jackson LS, De Vries JV and Bullerman LB (eds) Fumonisins in Food (pp 27–38) Plenum Press. New York
- Caramelli M, Dondo A, Cantini Cortellazzi G, Visconti A, Minervini F, Doko MB and Guarda F (1993) Equine leukoencephalomalacia from fumonisin: First case in Italy. Ippologia 4: 49–56
- Charmley LL, Trenholm HL, Prelusky DA and Rosenberg A (1995) Economic losses and decontamination. Natural Toxins 3: 199–203
- Chelkowski J (1989) Mycotoxins associated with corn cob fusariosis. In: Chelkowki J (ed.) Fusarium – Mycotoxins, Taxonomy and Pathogenicity (pp 53–62) Elsevier, Amsterdam
- Chelkowski J, Kwasna H, Zajkowki P, Visconti A and Bottalico A (1987) Fusarium sporotrichioides Sherb. and trichothecenes associated with Fusarium-ear rot of corn before harvest. Mycotoxin Research 3: 111–114
- Chelkowski J, Zawadzki M, Zajkowki P, Logrieco A and Bottalico A (1990) Moniliformin production by *Fusarium* species. Mycotoxin Research 6: 41–45
- Chelkowski J, Lew H and Pettersson H (1994a) Fusarium poae (Peck) Wollenw. Occurrence in maize ears, nivalenol production and mycotoxin accumulation in cobs. Mycotoxin Research 10: 116–120
- Chelkowski J, Pronczuk M, Visconti A, Doko MB (1994b) Fumonisin B₁ and B₂ accumulation in maize kernels inoculated under field conditions with *Fusarium moniliforme* Sheldon and in naturally infected cobs in Poland. Genetica Polonica, 35B: 333–338
- Ciudin E and Bazgan O (1991) Chromatographical and biological tests of some samples of maize grains with *F. graminearum* and *F. culmorum*. Cercetâri Agronomice în Moldova 24: 109–112
- Doko MB and Visconti A (1993) Fumonisin contamination of maize and maize-based foods in Italy. In: Scudamore KA (ed.) Occurrence and Significance of Mycotoxins (pp 49–55) Central Science Laboratory, London, UK
- Doko MB, Rapior S, Visconti A and Schjoth JE (1995) Incidence and levels of fumonisin contamination in maize genotypes grown in Europe and Africa. Journal of Agricultural and Food Chemistry 43: 429–434
- Doko MB and Visconti A (1994) Occurrence of fumonisin B_1 and B_2 in corn and corn-based human foodstuffs in Italy. Food Additives and Contaminants 11: 433–439
- Dragoni I, Piantanida L, Tirilly Y, Visconti A and Pascale M (1996) Occurrence of fumonisins in corn feedstuffs intended for pig consumption in Bretain (France). In: Abstract Book of IX International IUPAC Symposium on Mycotoxins and Phycotoxins, Rome, May 27–31, 1996, p. 39
- Ehling G, Cockburn A, Snowdon P and Buschhaus H (1997) The significance of the *Fusarium* toxin deoxynivalenol (DON) for human and animal health. Cereal Research Communications 25: 443–447
- Ellend N, Binder J, Krska R and Horvath EM (1997) Contamination of Austrian corn with *Fusarium* toxins in autumn 1996. Cereal Research Communications 25: 359–360

- Eriksen GS and Alexander J (1998) *Fusarium* Toxins in Cereals a Risk Assessment. TemaNord 1998:502. Nordic Council of Ministers. Ekspressen Tryk and Kopicenter, Copenaghen, Denmark, 146 pp
- Franceschi S, Bidoli E, Baron AE and La Vecchia C (1990) Maize and the risk of cancer of the oral cavity, pharynx and oesophagus in North-Eastern Italy. Journal of National Cancer Institute 82: 1407–1411
- Gelderblom WCA, Snyman SD, Abel S, Lebepe-Mazur S, Smuts CM, Van der Westhuizen L, Marasas WFO, Victor TC, Knasmuller S and Huber W (1996) Hepatotoxicity and carcinogenicity of the fumonisins in rats. A review regarding mechanistic implications for establishing risk in humans. In: Jackson LS, De Vries JW and Bullerman LB (eds) Fumonisins in Food (pp 279–296) Plenum Press, New York
- Golinski P, Vesonder RF, Latus-Zietkiewicz D and Perkowski J (1988) Formation of fusarenone X, nivalenol, zearalenone, α-trans-zearalenol, β-trans-zearalenol, and fusarin C by Fusarium crookwellense. Applied and Environmental Microbiology 54: 2147–2148
- Grabarkiewicz-Szczesna J, Foremska E and Golinski P (1996)
 Distribution of trichothecene mycotoxins in maize ears infected with *F. graminearum* and *F. crookwellense*. Mycotoxin Research 12: 45–50
- Gupta S, Krasnoff SB, Underwood NL, Renwick JAA and Roberts DW (1991) Isolation of beauvericin as an insect toxin from *Fusarium semitectum* and *Fusarium moniliforme* var. *subglutinans*. Mycopathologia 115: 185–189
- Harrison LR, Colvin BM, Greene JT, Newman LE and Cole JR (1990) Pulmonary edema and hydrotorax in swine produced by fumonisin B₁, a toxic metabolite of *Fusarium moniliforme*. Journal Veterinary Diagnosis Investigations 2: 217–221
- Harvey RB, Kubena RF, Rottinghaus GE, Turk JR and Buckley SA (1997) Effects of fumonisin and moniliformin from culture materials to growing swine. Cereal Research Communications 25: 415–417
- Hopmans EC and Murphy PA (1995) Fumonisins: Mycotoxins produced by *Fusarium* species. In: Bidlack WR and Omaye ST (eds) Natural Protectants Against Natural Toxicants. Vol. I. Natural Protectants and Natural Toxicants in Food (pp 61–78) Technomic Pub. Co. Inc., Lancaster Basel
- IARC (1993) IARC Monographs on the Evaluation of Carcinogenic risks to Humans. Vol. 56. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. International Agency for Research on Cancer, Lyon, 397–444; 445–466; 467–488
- Javed T, Bennett GA, Richard JL, Dombrink-Kurtzman MA, Coté LM and Buck WB (1993): Mortality in broiler chicks on feed amended with *Fusarium proliferatum* culture material or with purified fumonisin B₁, and moniliformin. Mycopathologia 123: 171–184
- Jurjević Z, Cvjetković B, Jurjević and Ceović V (1997) Occurrence of *Fusarium* spp. on corn in the region of endemic nephropathy in Croatia. Cereal Research Communications 25: 455–456
- Jurjević Z, Solfrizzo M, Cvjetković B, Avantaggiato G and Visconti A (1999) Ochratoxin A and fumonisins (B₁ and B₂) in maize from Balkan nephropathy endemic and non endemic areas of Croatia. Mycotoxin Research 15: 67–80

- Kellerman TS, Marasas WFO, Thiel PG, Gelderblom WGA, Cawood M and Coetzer JAW, (1990) Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B₁. Onderstepport Journal of Veterinary Research 2: 269–275
- Kostechi M, Szczesna J, Chelkowski J and Wisniewska H (1995) Beauvericin and moniliformin production by Polish isolates of *Fusarium subglutinans* and natural co-occurrence of both mycotoxins in cereal grain samples. Microbiologie, Aliments, Nutrition 13: 67–70
- Kostechi M, Grabarkiewicz-Szczesna J and Golinski P (1997) Simultaneous analysis of beauvericin and moniliformin in fungal cultures and in cereal grain samples. Mycotoxin Research 13: 17–22
- Krska R, Lemmens M, Schuhmacher R, Grasserbauer M, Pronczuk M, Wisniewska H and Chelkowski J (1996) Accumulation of the mycotoxin beauvericin in kernels of corn hybrids inoculated with *Fusarium subglutinans*. Journal of Agricultural and Food Chemistry 44: 3665–3667
- Krska R, Schuhmacher R, Grasserbauer M, Lemmens M, Lemmens-Gruber R, Adler A and Lew H (1997) Effects of beauvericin to mammalian tissue and its production by Austrian isolates of *Fusarium proliferatum* and *Fusarium subglutinans*. Mycotoxin Research, 13: 11–16
- Krüger W, (1989) Maize diseases caused by *Fusaria*: Involved species and mycotoxins. In: Chelkowki J (ed.) *Fusarium* Mycotoxins, Taxonomy and Pathogenicity (pp 297–317) Elsevier, Amsterdam
- Kuiper-Goodman T, Scott PM and Watanabe H (1987)Risk assessment of the mycotoxin zearalenone. Regulatory Toxicology and Pharmacology 7: 253–259
- Le Bars P and Le Bars J (1995) Ecotoxinogenesis of *Fusarium moniliforme*: Appearance of risks of fumonisins. Cryptogamie, Mycologie 16: 59–64.
- Ledoux DR, Bermudez AJ, and Rottinghaus GE (1995) Effects of feeding *Fusarium fujikuroi* culture material, containing known levels of moniliformin, in young broiler chicks. Poultry Science 74: 297–305
- Leslie JF (1995) *Gibberella fujikuroi*: Available populations and variable traits. Canadian Journal of Botany 73 (Suppl 1): S282–S291
- Lević J, Tamburić-Ilinčić L and Petrović T (1997) Maize kernel infection by *Fusaria* in the period 1994–1996. Cereal Research Communications, 25: 773–775
- Lew H, Adler A and Edinger W (1991) Moniliformin and the European corn borer (*Ostrinia nubilalis*). Mycotoxin Research 7A: 71–76
- Lew H, Chelkowski J, Pronczuk P and Edinger W (1996) Occurrence of the mycotoxin moniliformin in maize (*Zea mays* L.) ears infected by *Fusarium subglutinans*. Food Additives and Contaminants 13: 321–324
- Lew H, Adler A, Edinger W (1997) Dynamics of the Fusarium toxin distribution in maize plants affected by stalk rot. Cereal Research Communications 25: 467–470
- Logrieco A (2000) Advances on natural occurrence and production of beauvericin by *Fusarium* species. In: Abstracts of 6th European *Fusarium* Seminar (pp 42–43) 11–16 September, Berlin
- Logrieco A, Altomare C, Mulè G and A Bottalico (1992) Alcuni dati sulla presenza e patogenicità di chemiotipi di Fusarium

- graminearum in Europa. Atti Giornate Fitopatologiche 2, 287–294
- Logrieco A, Moretti A, Ritieni A, Chelkowski J, Altomare A, Bottalico A and Randazzo G (1993) Natural occurrence of beauvericin in pre-harvest *Fusarium subglutinans* infected corn ears in Poland. Journal of Agricultural and Food Chemistry 41: 2149–2152.
- Logrieco A, Moretti A, Ritieni A, Bottalico A and Corda P (1995) Occurrence and toxigenicity of *Fusarium proliferatum* from pre-harvest maize ear rot, and associated mycotoxins, in Italy. Plant Disease 79: 727–731
- Logrieco A, Moretti A, Fornelli F, Fogliano V, Ritieni A, Caiaffa MF, Randazzo G, Bottalico A and Macchia L (1996) Fusaproliferin production by *Fusarium subglutinans* and its toxicity to *Artemia salina*, SF-9 insect cells, and IARC/LCL 171 human B lymphocytes. Applied and Environmental Microbiology 62: 3378–3384
- Macchia L, Di Paola R, Fornelli F, Nenna S, Moretti A, Napolitano R, Logrieco A, Caiaffa MF, Tursi A and Bottalico A (1995) Cytotoxicity of beauvericin to mammalian cells. In: Abstracts of International Seminar on 'Fusarium: Mycotoxins, Taxonomy and Pathogenicity' May 9–13 (pp 72–73) Martina Franca
- Marasas WFO (1995) Fumonisins: Their implications for human and animal health. Natural Toxins 3: 193–198
- Marasas WFO, Thiel PG, Rabie CJ, Nelson PE and Toussoun TA (1986) Moniliformin production in *Fusarium* section *Liseola*. Mycologia 78: 242–247
- Milevoj L (1997) Electrophoretic study of proteins in the fungus *Fusarium moniliforme* var. *subglutinans*. Cereal Research Communications 25: 603–606
- Moretti A, Logrieco A, Bottalico A, Ritieni A and Randazzo G (1994) Production of beauvericin by *Fusarium proliferatum* from maize in Italy. Mycotoxin Research 10: 73–78
- Moretti A, Logrieco A, Bottalico A, Ritieni A, Randazzo G and Corda P (1995) Beauvericin production by *Fusarium subglutinans* from different maize geographical areas. Mycological Research 99: 282–286
- Moretti A, Logrieco A, Bottalico A, Ritieni A, Fogliano V and Randazzo G (1997) Diversity in beauvericin and fusaproliferin production by different populations of *Gibberella fujikuroi* (*Fusarium* section *Liseola*). Sydowia, 48: 44–56
- Munkvold GP, McGee DC and Carlton WM (1997) Importance of different pathways for maize kernek infection by *Fusarium moniliforme*. Phytopathology 87: 209–217
- Musser SM, Gay ML, Mazzola EP and Plattner RD (1996) Identification of a new series of fumonisins containing 3-hydroxypyridine. Journal of Natural Products 59: 970–972
- Nagy E and Bâgiu L (2000) Aggressiveness of *Fusarium graminearum* and *Fusarium moniliforme* in maize. In: Abstracts of the 6th European *Fusarium* Seminar (pp 80–81) 11–16 September, Berlin
- Nedelnik J (2000) Spectrum of *Fusarium* species and contamination with mycotoxins of corn in the Czech Republic. In: Abstracts of the 6th European *Fusarium* Seminar (pp 111–112) 11–16 September, Berlin
- Nelson PE, Toussoun TA and Marasas WFO (1983) Fusarium Species – An Illustrated Manual for Identification, Pennsylvania State University Press, University Park, Pennsylvania, USA

- Nelson PE, Plattner RD, Shackelford DD and Desjardins AE (1992) Fumonisin B₁ production by *Fusarium* species other than *F. moniliforme* in section *Liseola* and by some related species. Applied and Environmental Microbiology 58: 984–989
- Oldenburg E (1993) Occurrence of zearalenone in maize. Mycotoxin Research 9: 72–78
- Ostrý V and J Ruprich (1997) Fumonisiny, mykotoxiny produkované druhy rodu *Fusarium. Mykologické Listy*, 60: 11–18 (Reported by Review of Plant Pathology, 1997, 76:1147. Abstract No. 8853)
- Osweiler G (1995) Fumonisins and pulmonary edema in swine. In: Bidlack WR and Omaye ST (eds) Natural Protectants against Natural Toxicants. Vol. I, Natural Protectants and Natural Toxicants in Food (pp 79–87) Technomic Publishing Corporation, Lancaster Basel
- Pascale M, Doko MB and Visconti A (1995) Determination of fumonisins in polenta by high performance liquid chromatography. In: Proceedings of the 2nd National Congress on Food Chemistry, 24–27 May (pp 1067–1071) Giardini Naxos, Messina
- Patel S, Hazel CM, Winterton AGM and Gleadle AE (1997) Surveillance of fumonisins in UK maize-based foods and other cereals. Food Additives and Contaminants 14: 187–191
- Perkowski J, Chelkowski J, Plattner RD and Golinski P (1991) Cumulation of mycotoxins in maize cobs infected with Fusarium graminearum. Mycotoxin Research 7: 115–120
- Pestka J, Azcona-Olivera JI, Plattner RD, Minervini F, Doko MB and Visconti A (1994) A comparative assessment of fumonisin in grain-based foods by ELISA, GC-MS and HPLC. Journal of Food Protection 57: 169–172
- Piecková E and Jesenká Z (1997) Fusarium moniliforme and F. subglutinans in maize-based foodstuffs in the Slovak Republic. Cereal Research Communications 25: 609–610
- Pietri A, Bertuzzi T and Piva G (1995) Fumonisin contamination of maize grown in Italy. In: Abstracts of International Seminar on 'Fusarium: Mycotoxins, Taxonomy and Pathogenicity', May 9–13 (pp 18–19) Martina Franca
- Pittet A, Parisod V and Schellenberg M (1992) Occurrence of fumonisins B_1 and B_2 in corn-based products from the Swiss market. Journal of Agricultural and Food Chemistry 40: 1352–1354
- Plattner RD and Nelson PE (1994) Production of beauvericin by a strain of *Fusarium proliferatum* isolated from corn fodder for swine. Applied and Environmental Microbiology 60: 3804_3806
- Ramakrishnan NY and Wu WD (1994) Toxicity of corn culture material of *Fusarium proliferatum* M-7176 and nutritional intervention in chicks. Poultry Science 73: 617–626
- Rapior S, Miller JD, Savard ME and ApSimon JW (1993) Fumonisin and fusarin production *in vitro* by European strains of *Fusarium moniliforme*. Microbiologie, Aliments, Nutrition 11: 377–333
- Rheeder JP, WFO Marasas, PG Thiel, Sydenham EW, Shephard GS and van Schalkwyk DJ (1992) *Fusarium moniliforme* and fumonisins in corn in relation to human oesophageal cancer in Transkei. Phytopathology 82: 353–357
- Ritieni A., Fogliano V, Randazzo G, Scarallo A, Logrieco A, Moretti A, Bottalico A and Mannina L (1995) Isolation and

- characterization of fusaproliferin, a new toxic metabolite from *Fusarium proliferatum*. Natural Toxins 3: 17–20
- Ritieni A, Moretti A, Logrieco A, Bottalico A, Randazzo G, Monti MS, Ferracane R and Fogliano V (1997a) Occurrence of fusaproliferin, fumonisin B₁, and beauvericin in maize from Italy. Journal Agricultural and Food Chemistry 45: 4011–4016
- Ritieni A, Monti MS, Randazzo G, Logrieco A, Moretti A, Peluso G, Ferracane R and Fogliano V (1997b) Teratogenic effects of fusaproliferin on chicken embryos. Journal of Agricultural and Food Chemistry 45: 3039–3043
- Rizzo A, Atroshi F, Hirvi T and Saloniemi H (1992) The hemolytic activity of deoxynivalenol and T-2 toxin. Natural Toxins 1: 106–110
- Ross PF, Nelson PE, Richard JL, Osweiler GD, Rice LG, Plattner RD and Wilson TM (1990) Production of fumonisins by *Fusarium moniliforme* and *F. proliferatum* associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Applied and Environmental Microbiology 56: 3225–3226
- Rotter BA and Prelusky DB (1996) Toxicology of deoxynivalenol (vomitoxin). Journal of Toxicology and Environmental Health 48: 1–34
- Sanchis V, Abadias M, Oncins L, Sala N, Vinas I and Canela R (1994) Occurrence of fumonisins B₁ and B₂ in corn-based products from the Spanish market. Applied and Environmental Microbiology 60: 2147–2148
- Sanchis V, Abadias M, Oncins L, Sala N, Viñas I and Canela R (1995) Fumonisins B₁ and B₂ and toxigenic *Fusarium* strains in feeds from the Spanish market. International Journal of Food Microbiology 27: 37–44
- Schütt F, Nirenberg HI and Deml G (1998) Moniliformin production in the genus *Fusarium*. Mycotoxin Research 14: 35–40
- Sharman M, Gilbert J and Chelkowski J (1991) A survey on the occurrence of moniliformin in cereal samples from sources worldwide. Food Additives and Contaminants 8: 459–466
- Shephard GS, Thiel PG, S Stockenström and Sydenham EW (1996) Worldwide survey of fumonisin contamination of corn and corn-based products. Journal of the Association of Official Analytical Chemists International 79: 671–687
- Shurtleff MC (1980) Compendium of Corn Diseases. The American Phytopathological Society, 128 pp
- Srobárová A (1997) Occurrence of *Fusarium* spp. from Slovakia maize kernels. Cereal Research Communications 25: 617–618

- Srobárová A., Logrieco A, Ritieni A, Ferracane A, Moretti A and Nadubinská M (2000) Contamination of the maize ear by toxigenic *Fusarium* spp. In Slovakia. In: Abstracts of the 6th European *Fusarium* Seminar, 11–16 September (pp 44–45) Berlin
- Sydenham EW, Marasas WFO, Thiel PG, Shephard GS and Nieuwenhuis JJ (1991) Production of mycotoxins by selected *Fusarium graminearum* and *F. crookwellense* isolates. Food Additives and Contaminants 8: 31–41
- Szécsi A (1994) Occurrence of *Fusarium* species in section *Liseola* isolated from Hungarian corn samples in 1991 and 1992. Novenyvedelem 30: 313–318
- Szécsi A and Bartok T (1995) Trichothecene chemotypes of Fusarium graminearum from corn in Hungary. Mycotoxin Research 11: 85–92
- Usleber E, Straka M and Terplan G (1994) Enzyme immunoassay for fumonisin B₁ applied to corn-based food. Journal Agricultural Food Chemistry 42: 1392–1396
- Visconti A (1996) Fumonisins in maize genotypes grown in various geographic areas. In: Jackson LS, De Vries WJ and Bullerman LB (eds) Fumonisins in Food (pp 193–204) Plenum Press, New York
- Visconti A, Chelkowski J, Solfrizzo M and Bottalico A (1990) Mycotoxins in corn ears naturally infected with *Fusarium* graminearum and *F. crookwellense*. Canadian Journal of Plant Pathology 12: 187–189
- Visconti A, Pascale M and Doko MB (1996) Fumonisins in Europe. Production by *Fusarium* isolated from cereals and occurrence in maize and maize products intended for human and animal consumption. In: Marengo G and Pastoni F (eds) The European Union's Innovative Policy Against Food-Transmitted Disease (pp 162–174) EUR 16414 EN, ECSC-EC-EAEC, Brussels, Luxembourg,
- Wang ZG, Feng J and Tong Z (1993) Human toxicosis caused by moldy rice contaminated with *Fusarium* and T-2 toxin. Biomedical Environmental Science 6: 65–70
- Warfield CY and Gilchrist DG (1999) Influence of kernel age on fumonisin B₁ production in maize by *Fusarium moniliforme*. Applied and Environmental Microbiology 65: 2853–2856
- WHO (2000) International Programme on Chemical Safety. Environmental Health Criteria 219: Fumonisin B₁. World Health Organization, Geneva, 150 pp